Statistical Inference on Mobile Phone Network Data

European Forum for Geography and Statistics (EFGS 2018)

Martijn Tennekes
October 16-18, 2018
Predecessors of Mobile Phones

Car telephone system

Walkie-talkie
Why are mobile phones called ‘cell-phones’?

The target area is chopped into small cells such that each cell is covered by a cell tower.

Advantages:

- Close proximity to antennas -> small batteries
- Communication frequencies can be reused without disturbance from other antennas
Type of antennas

- **Cell tower**
 - 3 antennas, each covering 120º
 - Coverage up to 40 km

- **Rooftop cell site**
 - Coverage up to 40 km

- **Small cell**
 - Coverage up to 2 km

- **Indoor cell**
 - Coverage 200 m
Simplified cell-plan...

- Cell site (BTS)
- Cell antenna
- Cell coverage area
Mobile phone generations

<table>
<thead>
<tr>
<th>Generation / description</th>
<th>Year of introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0G Mobile radio telephone, used in car telephones.</td>
<td>1940’s - 1970’s</td>
</tr>
<tr>
<td>1G Mobile analog telecommunications.</td>
<td>1981</td>
</tr>
<tr>
<td>2G Global System for Mobile Telecommunications (GSM) standard.</td>
<td>1991</td>
</tr>
<tr>
<td>Digital encryption used. Introduction of SMS and MMS messages.</td>
<td></td>
</tr>
<tr>
<td>3G Universal Mobile Telecommunications Service (UMTS) and CDMA2000 standards.</td>
<td>2001</td>
</tr>
<tr>
<td>Introduction of mobile internet. 10 Mb/s</td>
<td></td>
</tr>
<tr>
<td>4G Mobile broadband data, including voice over data. Enabling video conferencing and</td>
<td>2008</td>
</tr>
<tr>
<td>cloud computing. Download rates:</td>
<td></td>
</tr>
<tr>
<td>100 Mb/s at high mobility (cars/trains)</td>
<td></td>
</tr>
<tr>
<td>1 Gb/s at low mobility (pedestrians)</td>
<td></td>
</tr>
<tr>
<td>5G High speed mobile internet. Probably around 10Gb/s.</td>
<td>2020</td>
</tr>
</tbody>
</table>
Signaling data / Call Detail Records

Signaling data
- 100 variables, e.g.
 - Antenna id (geolocation)
 - Time/date
 - Country
 - Provider
 - Type of event
- Hundreds of records per device per day (4G)

Mobile phone usage
- Call (incl. being called)
- SMS (send and receive)
- Data (continuous logging)

Events trigged by movements, e.g. handovers from one area to another.

Call Detail Records (CDR)
- Used for billing
- Every provider should have them
Applications for Official Statistics

1. **Day Time Population**: the number of people in a certain region at a certain time. Useful for visitor counts during events, infrastructure planning, emergency management.

2. **Tourism statistics**: what places do they visit, where do they overnight, where do they come from?

3. **Commuting patterns**: where do people live and work? How and when do they commute?

4. **Urban planning / smart city**: what trips do people make in urban areas? By what mode of transport?

5. **Social networking**: who is connected to whom?

6. **Natural disasters**: what are the migration flows over time?
How to determine geolocation?

Voronoi tessellation

Cell tower

Area for which it is the nearest cell tower
A device using the cell tower is supposed to be somewhere in this polygon (uniform distribution)

Assumptions:
• All antennas are omnidirectional
• Areas do not overlap
Taking overlap into account

Bayesian approach

\[Pr(g|a) = \frac{Pr(a|g) Pr(g)}{Pr(a)} \]

where \(g \) is a grid cell and \(a \) an antenna

- \(Pr(g) \) specifies a prior probability that a device is in grid cell \(g \)
- \(Pr(a) \) serves as a normalization constant
- \(Pr(a|g) \) is the likelihood, which can be defined as:

\[
Pr(a|g) = \begin{cases}
0 & \text{if grid cell } g \text{ is not covered by } a \\
\frac{s(g, a)}{\sum_{a' \in B(a')} s(g, a')} & \text{if grid cell } g \text{ is covered by } a
\end{cases}
\]

where \(s(g, a) \) the (relative) signal strength of antenna \(a \) in grid cell \(g \) and \(B(a') \) is the set of grid cells covered by \(a' \)
Signal strength is complex in reality...

Radiation plots for a specific antenna:

Beam (simplified) for which signal strength is good

Signal delta (dBm)

Angle w.r.t. main direction
R package mobloc

- Developed at Statistics Netherlands, as part of the ESSnet Big Data (WP 5)
- Process:
 1. Setup signal strength model (interactive tool)
 2. Check cell-plan data
 3. Create coverage area per antenna (polygons)
 4. Calculate the relative signal strength and likelihood per grid cell and antenna.
 5. Check results (interactive tool)
- https://github.com/MobilePhoneESSnetBigData/mobloc
Signal strength configuration

Antenna data

Analysis plots
mobloc

Elevation data

Dots are antennas
mobloc

Voronoi tessellation

Needed to approximate coverage area polygon sizes (see next slide)
mobloc

Coverage area polygons

Voronoi area sizes are used as a proxy
mobloc

Cell Inspection Tool

Signal strength (dBm)

yellow = high
red = low
mobloc

Cell Inspection Tool

Relative signal strength

yellow = low
red = high
Cell Inspection Tool

Probability (likelihood)

yellow = low
red = high
From location to estimates

1. Deriving home location (needed because signaling data / CDR does not contain customer data. Method: take antenna(s) where a device is during nights (proxy) level: neighbourhood or municipality

2. Aggregate likelihood values per time frame (e.g. one hour) per device

3. Data cube:

4. Calibrate with population registers and education registers.
Further research

• Use prior information. Currently, the prior $Pr(g)$ is assumed to be uniform. More realistic would be to use the following sources:
 • Land use. People are more likely present in buildings than in grass fields. Also roads, railway tracks have a higher probability.
 • Cell-plan. Mobile Network Operators place the antennas in order to optimize the mobile communication service. Therefore, the cell-plan contains valuable information about where people are expected to be.

• Use of additional network data, e.g. timing advance, best area maps

• Improve the location by looking at the sequence of connected antennas, e.g. with MCMC