PROOF-OF-CONCEPT SERVICE FOR GEOSPATIAL AND STATISTICAL DATA INTEGRATION

Pekka Latvala EFGS Webinar 20-21 October 2020

BACKGROUND

• GEOSTAT4

- Project aims at increasing the integration between geospatial and statistical information in Europe.
- Continues the work of the earlier GEOSTAT projects
 - GEOSTAT 1 (2010-2014), GEOSTAT 2 (2015-2016), GEOSTAT 3 (2017-2019)
- Project participants:
 - 9 European National Statistical Institutes
 - Austria, Finland, France, Germany, Norway, Poland, Portugal, Slovenia, Sweden
 - 4 subcontracting organizations including the **National Land Survey of Finland**.
- Some project's objectives
 - To complete the Global Statistical Geospatial Framework (GSGF) in Europe
 - To support the implementation of the GSGF Europe
 - To set up a proof-of-concept service that combines geospatial and statistical information.
- To plan is to set up poc of the draft version of the updated TJS standard
 - TJS implementation developed by the NLS-FI

TJS 1.0.0

- Table Joining Service standard version 1.0.0 has been originally defined by the OGC in 2010
- Features:
 - Describing and exchanging tabular attribute data that relates to geographic objects
 - Describing metadata on spatial datasets
 - Joining the attribute data with different spatial datasets
 - The data joining is executed through common identifiers that are shared between the spatial and attribute datasets
 - Uses an XML-based GDAS format for describing the attribute data
 - Based on the idea of distributed data management and processing
 - Some TJS servers are providing attribute data in the GDAS format
 - Other TJS servers host spatial datasets and can join the GDAS data with them

TJS UPDATE

- Currently, work is ongoing in the OGC for updating the TJS standard
- Draft version available in GitHub
 - <u>https://github.com/opengeospatial/tjs</u>
- Main changes:
 - RESTful service interface
 - OpenAPI specification recommended for interface description
 - Interaction with the service through HTTP operations (GET, POST, PUT, DELETE etc..)
 - JSON as main output format instead of GDAS (other formats also possible)
 - Support for CSV format for attribute data and GeoJSON format for spatial data

TJS UPDATE – STRUCTURE

• New TJS standard vertsion is defined with modular structure (core + extensions)

Functionalities:

- Basic TJS functionalities
- Support for CSV and GeoJSON formats

Possible extension modules:

- Support for additional data formats
- New functionalities
- etc...

DISCOVERY OPERATIONS

- Common operations for all TJS implementations
 - API landing page
 - Contains links for navigating to other resources
 - API definition document
 - The API definition document (Open API)
 - Service conformance infornation
 - Information about the functionalities that the TJS implementation supports

DATA JOINING OPERATIONS

- Joins attribute data from inputted attribute data files with spatial datasets on the server
- Functionalities:
 - Viewing metadata on:
 - All spatial datasets available on the server
 - Specific spatial dataset
 - Specific spatial dataset key fields,
 - Specific spatatial dataset key field keys,
 - Specific spatial dataset key field specific key
 - Adding a spatial dataset to the server from GeoJSON files
 - Updating a spatial dataset on the server from GeoJSON files
 - Deleting a spatial dataset from the server
 - Joining attribute data from CSV files with a spatial datasets on the server
 - Joining done via common key values that exist in both datasets that can be codes, names, etc...
 - Direct GeoJSON output
 - Join response document (multiple outputs formats for the joined data, creates a join resourse)
 - Optional metadata on the successfulness of the join operation (matched, unmatched and additional keys)
 - Updating a join from a CSV files
 - Deleting a join from the server

SPATIAL JOINING OPERATIONS

- Joins attribute data from the server with inputted spatial data files
- Functionalities
 - Viewing metadata on:
 - All attribute datasets available on the server
 - Specific attribute dataset
 - Attribute dataset key fields
 - Attirbute dataset key field key values
 - Attribute dataset key field's specific key
 - Adding a new attribute dataset to the server from CSV files
 - Updating an attribute dataset on the server from CSV files
 - Deleting an attribute dataset from the server
 - Joining attribute data from the server with inputted GeoJSON files

FILE JOINING OPERATIONS

- Joins data from inputted attribute data files with inputted spatial data files
- Functionalities:
 - Joining attribute data from an inputted CSV files directly witth an inputted GeoJSON file
 - Response is returned directly in the GeoJSON format containing the joined attributes

DEMO IMPLEMENTATION

- NLS-FI has created a demo implementation of the new TJS standard draft
 - Implements all functionalities of the new draft version

- Depending on the operation, the attribute data are either joined dwith an inputted GeoJSON file or they are joined in the PostgreSQL/PostGIS database and published as a layer to the GeoServer
- Joined data outputs are available through GeoServer in all formats that it supports
 - WFS, WMS, GeoJSON, Shapefile, KML, OpenLayers client, etc...

NEXT STEPS...

- The plan in the GEOSTAT4 project is to set up a proof-of-concept service of the new TJS standard draft implementation that has been created by the NLS-FI
 - United Nations Global Platform environment
- A user panel will be formed
 - Testing the service
 - Providing feeback on the service

THANK YOU

