Enhancing reliability of soil sealing indicators by use of geostatistical modeling

Patrick Sillard

Observation and Statistics Service - French Ministry of Environment, Energy and Marine affairs

Nov. 2016

Context of the study

Public policies aiming at

- limiting the impact of human being on nature
- limiting soil consumption (artificialisation, sealing) which has a negative impact on biodiversity and water flow

Role of NSI's

- Computing indicators that makes it possible to follow the impact of public policies in this field
- Being able to qualify statistics computed on various geostatistical sources

Motivation of the paper

Many different Sources: CORINE Land Cover (Geog./HRL), Teruti,...

And apparent inconsistencies between published statistics

Sources : CORINE Land Cover (Geog. HRL), Teruti-Lucas survey, [national geographic databases, land tax databases]...

Source	artificialisation	imperviousness
CORINE-Geog.	5.8%	
CORINE-HRL		2.8%
Teruti (LUCAS)	9.3%	4.6%

Goal of the study

⇒ to develop a statistical model that makes all these statistics more consistent : Are there biases or larger standard deviations than expected?

Teruti-Lucas [TL]

A "classical" statistical survey (European)

- one observation point per $km^2: 3 \times 10^5$ points
- the collector observes land occupation and use within a 3m-extent circle (according to a specific classification)
- Systematic sample
- Confidence intervals (CI) are computed for national rates. For example, the national rate for artificial soils is 9.3% and the 99% CI is [9.1%, 9.5%].

CORINE Land Cover

2 products: CLC-G & CLC-HRL

- A geographic database [CLC-G] made of polygons coherent with respect to land cover, produced at a medium-sized map
- \bullet A raster database [CLC-HRL] for imperviousness made of 20m-cells giving the local degree of imperviousness (between 0 and 1) : 1.3 \times 10 9 points

A "classical" geographic database (European)

- the production scale of CLC-G is small, then the contours are rather generalized
- the raster layer describes a 20m-scale phenomenon, not a 2m-scale phenomenon as TL
- national rates are computable, but no CI is published

A geospatial process

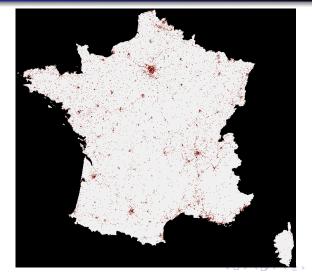
Imperviousness and Artificial lands are local phenomenons

- Highly concentrated, very rare, omnidirectional
- Developing at a very detailed scale: the transition zone between sealing and unsealing soils has an extension smaller than 1m (a few tenth of a meter)

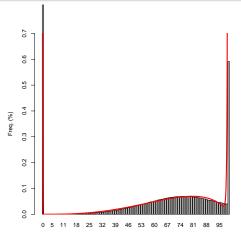
From a probabilistic perspective

- A stochastic process with a 2-D continuous geographic support
- Rare. Possibly, at a certain scale, be considered as a binary variable.
 The (local) rate must be a continuous RV over [0,1]
- Strong auto-correlation, isotropic
- Probably stationary

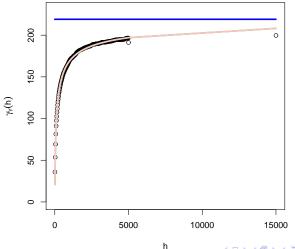
Map of imperviousness raster (CLC-HRL)



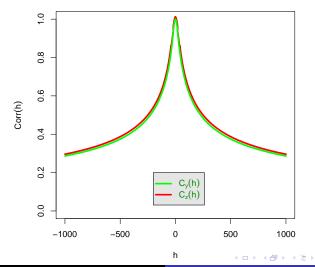
Marginal distribution function of imperviousness raster process (CLC-HRL)



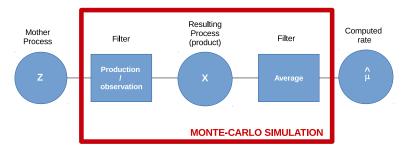
Variogram of imperviousness raster process (CLC-HRL)



Autocorrelation of imperviousness model process



Monte-Carlo simulations based on this statistical model



If we are able to draw samples of the process, then :

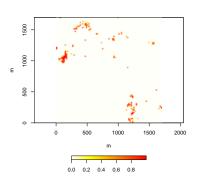
- we can compute the distribution of the estimated rates
- we can compute Confidence Intervals (CI)

11/17

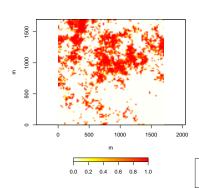
Sillard Geostatistics

I. Imperviousness simulation (CLC-HRL type)

example 1

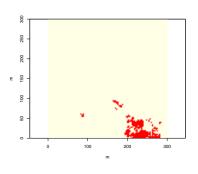


example 2

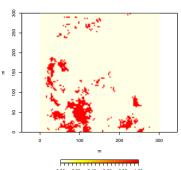


II. Imperviousness simulation (TL type)

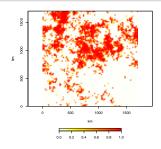
example 1

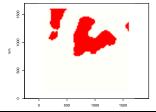


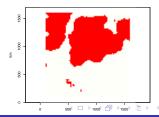
example 2



III. Imperviousness simulation (CLC-G type)







Estimation of rates

- Y : vector of observations of size n
- μ the rate to be estimated
- $var(\mathbf{Y}) = \sigma^2 \Omega$, Ω being the correlation matrix

$$\hat{\mu} = \frac{1}{n} \mathbf{1}^T . \mathbf{Y}$$

$$\frac{\Omega = I_n \qquad | \qquad \text{Any } \Omega}{\operatorname{var}(\hat{\mu})_0 = \frac{\sigma^2}{n} \qquad | \qquad \operatorname{var}(\hat{\mu}) = \frac{\sigma^2}{n^2} \sum_{i,j} \Omega_{i,j}}$$

$$\Rightarrow \operatorname{var}(\hat{\mu}) = \frac{1}{n} \left(\sum_{i,j} \Omega_{i,j} \right) \operatorname{var}(\hat{\mu})_0$$

Variance Inflation Factor

Sillard

Summary of rates and Confidence Intervals

	Process		3σ -Confidence	3σ -Confidence Interval	
Variable	Mean	St. dev.	Sample	Sample mean	
			(1)	(2)	
Imperviousness rate CLC-HRL	2.8%	14.8%	[2.799%; 2.801%]	[2.1%; 3.5%]	
Imperviousness rate Teruti-Lucas	4.6%	20.1%	[4.9%; 4.7%]	[3.4%; 5.8%]	
Artificialization rate Teruti-Lucas	9.3%	29.0%	[9.1%; 9.5%]	[7.6%; 11.0%]	
Artificialization rate CLC-G	5.8%	/	/	/	

(1): without taking into account autocorrelation

(2): taking into account autocorrelation

Conclusion

Computing statistical indicators over geospatial information

- we must model the mother process and simulate the production process
- Geographical databases look exhaustive but they rely on a transformation of reality and then
 - The consequences (biases) on the statistics we want to compute must be checked
 - 2 The distribution of the resulting statistics must be computed
- Classical statistical surveys also have drawbacks. In the case of Teruti-Lucas, two problems arise:
 - observations points are not independent and the systematic sample design is sub-optimal
 - ② Std of rates is underestimated if we don't take into account correlation coming from the underlying process

