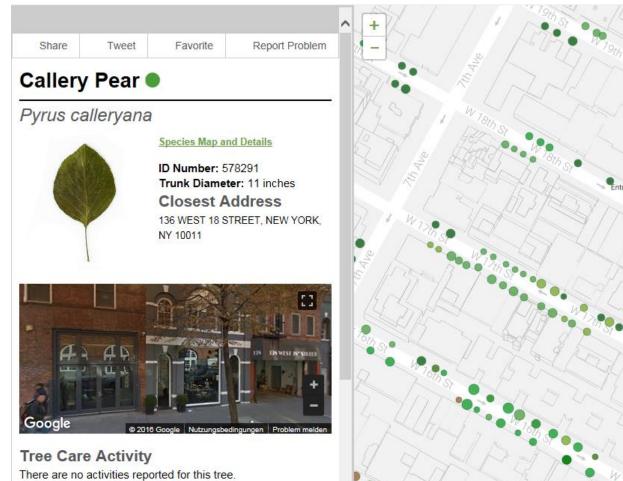
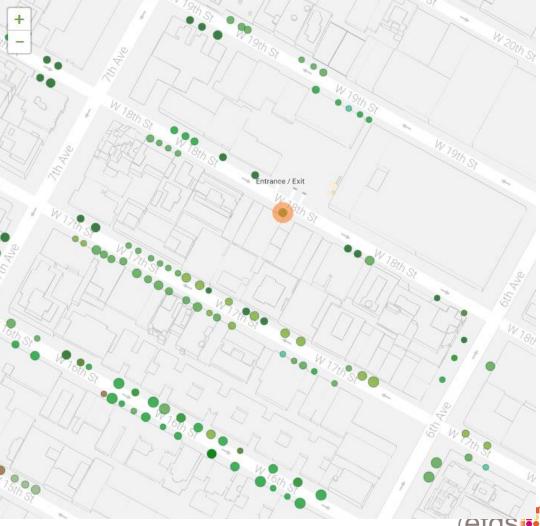


Ecosystem accounting: Integrated System of Natural Capital and Ecosystem Services Accounting in the EU (INCA)

Ekkehard PETRI, Eurostat 2016 EFGS conference, Paris, 15-17 November 2016




Content

- Quick introduction to ecosystem accounting
- Why do we do ecosystem accounting?
- What can you do with ecosystem accounting?
- Data challenges
- National and EU examples

Tree Care Activity

There are no activities reported for this tree.

Record Your Care

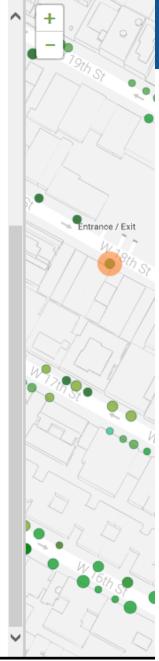
Ecological Benefits

Benefits are calculated using formulas from the U.S. Forest Service. Learn more about the benefits of trees to NYC

Stormwater intercepted each year

2,031 gallons Value: \$20.11

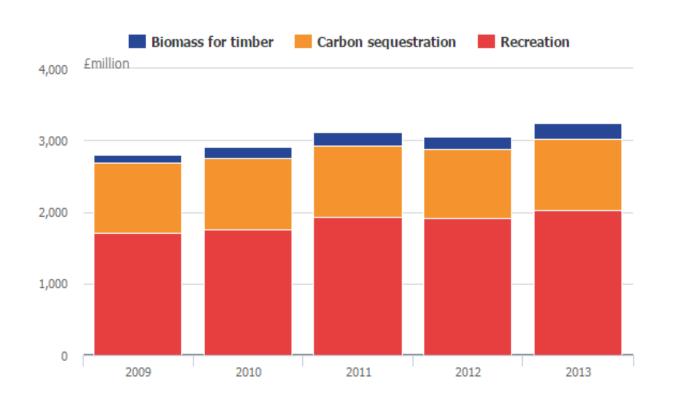
Energy conserved each year 1,153 kWh Value: \$145.52


Air pollutants removed each year

3 pounds Value: \$15.32

Carbon dioxide reduced each year

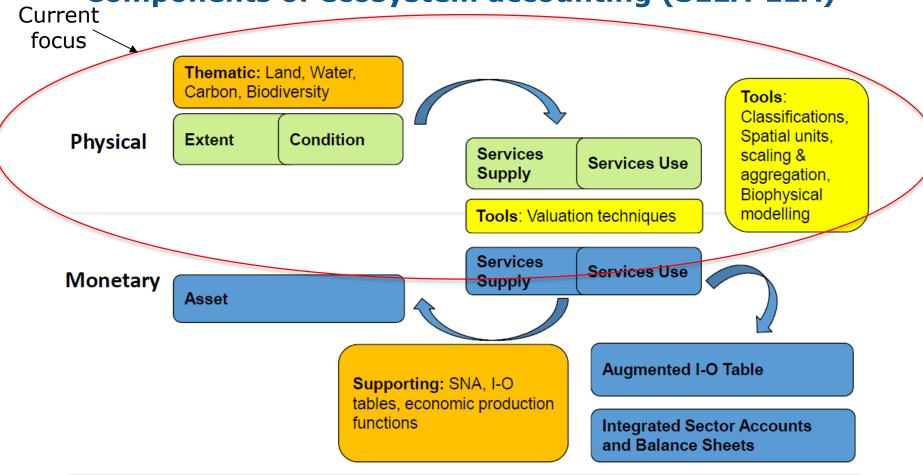
1,378 pounds Value: \$4.60


Total Value of Annual Benefits \$190.16

The Value of a Tree: ecosystem services in UK woodland

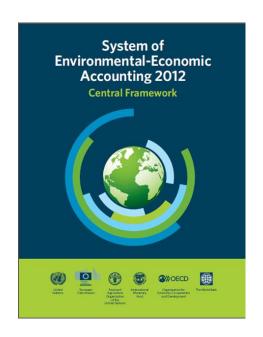
Benefits of natural capital accounting

- Monitor the status of natural capital;
- Show interdependencies and 'trade-offs' between natural capital and economic activities;
- Indicate specific ecosystems or aspects of biodiversity under particular threat;
- Allow measurement of the changes in these elements over time;
- Monitor the effectiveness of various policies;
- Provide input to economic policies by showing the dependency of economic sectors on natural capital;
- Supports the development of macro-indicators for natural capital or the monetary valuation of natural capital;

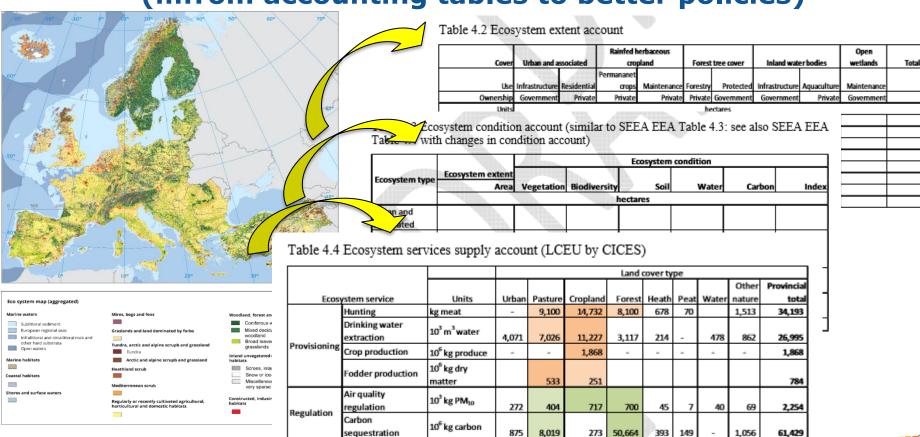

What is ecosystem accounting?

- Ecosystem = spatial area combining biotic and non-biotic components functioning together
- Ecosystems have an extent (=size) and a condition (=state or quality).
- They produce a bundle of ecosystem services (= contributions to human benefits and well-being excludes flows that benefit nobody or only other ecosystems)
- They also have a potential (= ability to produce more ecosystem services than are demanded, or produce a different basket = can be converted within limits)
- Based on classifications (= lists of ES and ESS, the latter = CICES)

Components of ecosystem accounting (SEEA-EEA)



EU and **UN** Accounting frameworks



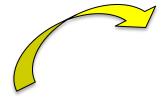
And how does it really work? - From maps to accounting tables... (...from accounting tables to better policies)

seguestration

Cultural

Recreational cycling 103 trips

9,121


393

1,863

2,611

Example: Ecosystem extent accounts

		7 3/2				
Eco system map (aggregated)						
Marine waters	Mires, bogs and fens	Woodland, forest and other wooded land				
Sublittoral sediment		Conferous woodland				
Buropean regional seas	Graslands and land dominated by forbs	 Mixed deciduous and coniferous 				
Infralitional and circulitional rock and	253	woodland Broad leaved and sparsely wooded				
other hard substrata Onen waters	Tundra, arctic and alpine scrupb and grassland	grasslands				
	Tundra	Inland unvegetated or sparsely vegetated				
Marine habitats	Arctic and alpine scrupb and grassland	habitata				
100	Heathland scrub	Screes, inland cliffs				
Ceastal habitats		Snow or ice-dominated habitats				
888	Mediterrenean scods	Miscellaneous inland habitats with were sparse or no vegestion				
Shores and surface waters	101	very sparse of no regestion				
000	Regularly or recently cultivated agricultural, horticultural and domestic habitats	Constructed, industrial and other artificial habitats				

F	AREA in KM2	MAES ECOSYSTEM TYPES									
		1	2	3	4	5	6	7	8	9	Total
		Urban	Cropland	Grassland	Woodland	Heathland	Sparsely	Inland	Rivers and	Marine	
					and forest	and shrub	vegetated	wetlands	lakes	Inlets and	
							land			transitional	
										waters	
E	Ecosystem extent 2006	232,494	2,035,766	652,817	2,009,117	279,496	344,585	129,079	141,319	27,858	5,852,532
F	Reductions to initial ecosystem extent	2,539	11,812	4,722	69,766	1,253	2,181	189	272	84	92,817
F	Additions to initial ecosystem extent	8,259	6,867	3,246	70,394	586	1,913	248	1,256	48	92,817
P	Net additions to ecosystem extent	± 5.720	- 4,945	- 1,476	+ 628	- 667	- 268	+ 59	+ 984	- 36	
((additions - reductions)	+ 5,720	- 4,945	- 1,476	+ 028	- 007	- 208	+ 39	+ 904	- 30	
1	Net additions as % of initial year	+ 2.5	- 0.2	- 0.2	+ 0.0	- 0.2	- 0.1	+ 0.0	+ 0.7	- 0.1	
T	Total turnover of ecosystem extent	10,798	18,680	7,968	140,161	1,839	4,094	436	1,528	132	185,635
((reductions + additions)	10,750	10,000	7,300	140,101	1,035	4,054	430	1,320	132	165,055
T	Total turnover as % of initial year	4.6	0.9	1.2	7.0	0.7	1.2	0.3	1.1	0.5	3.2
S	Stable ecosystem stock in KM2	229,956	2,023,954	648,096	1,939,351	278,243	342,404	128,891	141,047	27,774	5,759,715
9	% of ecosystem stock that was stable	98.9	99.4	99.3	96.5	99.6	99.4	99.9	99.8	99.7	98.4
E	Ecosystem extent 2012	238,215	2,030,821	651,342	2,009,746	278,829	344,316	129,138	142,303	27,822	5,852,532
S	source: EEA/CLC V18.5 DD calculation										

Political framework - EU Biodiversity Strategy

Target 2: By 2020, ecosystems and their services are maintained and enhanced by establishing green infrastructure and restoring at least 15% of degraded land

Action 5: Integrate the economic value of ecosystems and their services into accounting and reporting systems at EU and national level (by 2020)

Structure of the EU 2020 Biodiversity Strategy 2050 VISION 2020 headline target halt biodiversity loss – restore ecosystem services – global contribution SIX TARGETS Enhance Sustainable Sustainable Combat Contribute to Restore implementation ecosystems agriculture fisheries Alien averting global biodiversity of nature establish Green and Invasive legislation Infrastructure forestry Species

EU 7th Environmental Action Programme to 2020 'Living well, within the limits of our planet'

Objective 1: 'protect, conserve and enhance the European Union's natural capital'

Objective 5: build environmental knowledge base

Living well, within the limits of our planet

7th Environment Action Programme

Ecosystem accounting for SDG monitoring

SUSTAINABLE DEVELOPMENT GOAL 2

End hunger, achieve food security and improved nutrition and promote sustainable agriculture

SUSTAINABLE DEVELOPMENT GOAL 14

Conserve and sustainably use the oceans, seas and marine resources for sustainable development

SUSTAINABLE DEVELOPMENT GOAL 15

Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss

2.4

By 2030, ensure sustainable food production systems and implement resilient agricultural practices that increase productivity and production, that help maintain ecosystems, that strengthen capacity for adaptation to climate change, extreme weather, drought, flooding and other disasters and that progressively improve land and soil quality

15.1

By 2020, ensure the conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems and their services, in particular forests, wetlands, mountains and drylands, in line with obligations under international agreements

Indicator 15.1.2 Proportion of important sites for terrestrial and freshwater biodiversity that are covered by protected areas, by ecosystem type

8.9

By 2030, devise and implement policies to promote sustainable tourism that creates jobs and promotes local culture and products

14.2

By 2020, sustainably manage and protect marine and coastal ecosystems to avoid significant adverse impacts, including by strengthening their resilience, and take action for their restoration in order to achieve healthy and productive oceans

15.9

By 2020, integrate ecosystem and biodiversity values into national and local planning, development processes, poverty reduction strategies and accounts

Project KIP INCA

Knowledge Innovation Project on an Integrated System of Natural Capital and Ecosystem Services Accounting in the EU

Design and Implement an integrated accounting system for ecosystems and services at EU level

- Address EU policy needs linked to ecosystems and natural capital and strengthen the knowledge base for the implementation of the 7th EAP;
- Test international environmental accounting guidelines (SEEA);
- Integrate existing EU data sources and MS reporting exercises; identify gaps and needs for adjustment;
- Further harmonise ecosystem-accounting activities between EU and MS
 - Develop EU level accounts and support MS in developing accounts;
 - Provide a shared ecosystem accounting platform for MS to build on
 - Some MS already advancing (NL, UK especially, also DE, FR, FI.....)

Main characteristics of INCA

Data quality and architecture:

- Integrated geo-spatial data platform. Include CORINE/Copernicus data at a Minimum Mapping Unit of 1ha, and possibility higher resolutions.
- Works with existing EU level data (Copernicus, LUCAS, agriculture and other statistics, administrative, environment monitoring data)
- Optional MS data (national regional) to link-in to EU layer

• Ecosystem Services:

 Minimum set of ecosystem services: provisioning, regulatory and cultural services: crops, timber, fish, pollination, water purification, air filtration, carbon sequestration, flood and erosion control, recreation/tourism.

Types of accounts:

 ecosystem extent; ecosystem condition; ecosystem service supply and use, experimental asset accounts in monetary terms.

Main data sources: present situation

Many different & separate & expensive data collection exercises which are not tailored to mapping and assessing ecosystems and which are undertaken by different institutions:

LUCAS (ground observation)

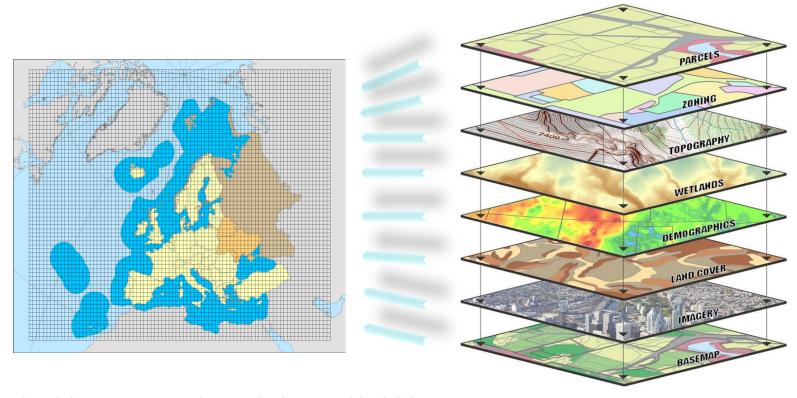
Biodiversity monitoring

COPERNICUS (satellite images)

Forest statistics

CORINE Land Cover

Water Framework
Directive reporting

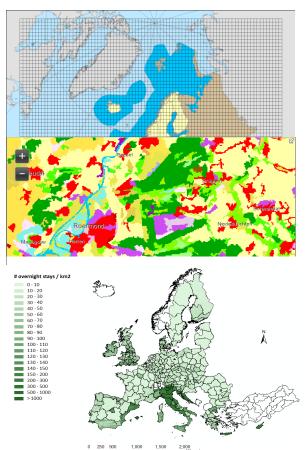

Farm Structure Survey (agricultural census)

Natura 2000 reporting

...(others)

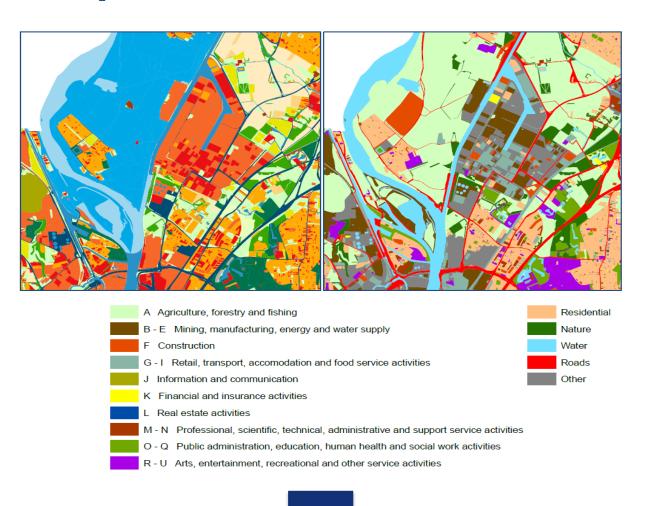
Geospatial data platform – Basic spatial units to integrate different datasets

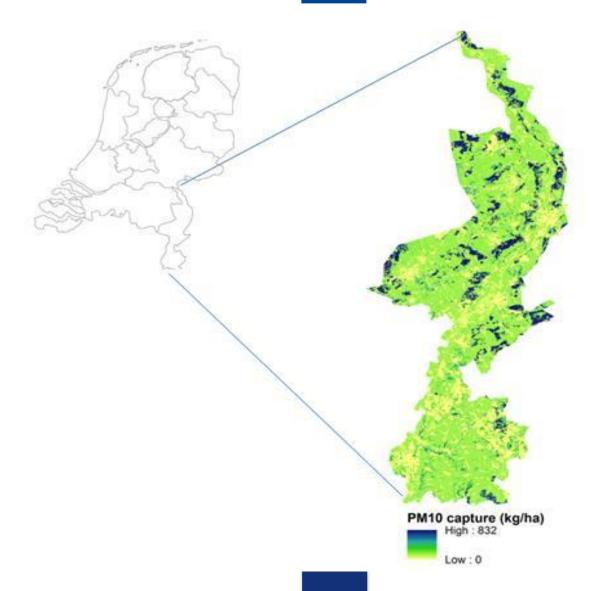
 $\underline{\text{Note:}}$ Shared data semantics & other standards required for full data integration.

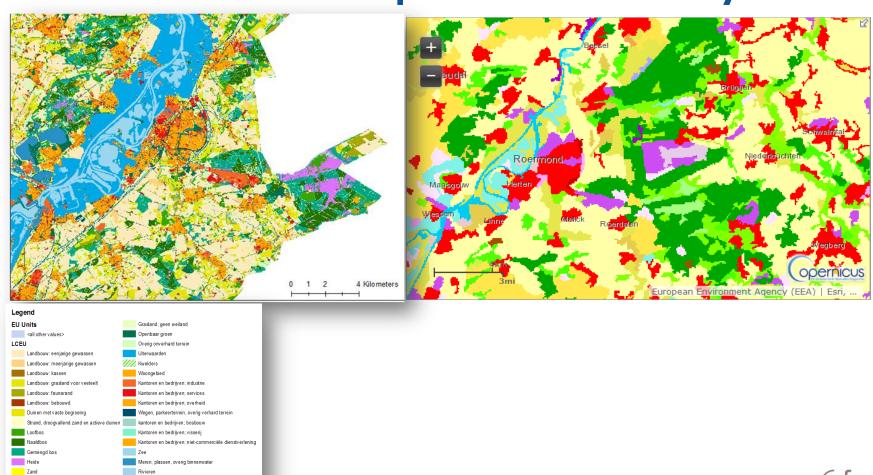

efgs

16/11/2016 21

Geospatial data platform - system of geographies for ecosystem accounting


- Basic spatial units (=small unit, e.g. 1km2 grid cells)
- Land cover/ecosystem functional units (= ecosystems)
- Accounting units (= e.g. administrative regions)


Ecosystem units in an ideal world



National champions vs. EU reality

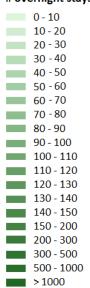
//// Wetlands

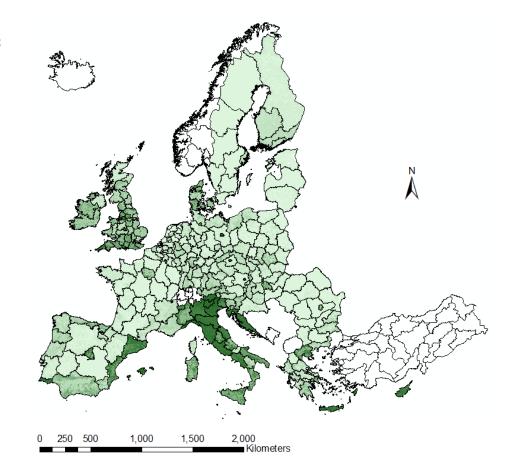
Onbekend

Street Tree Layer (STL) Not yet validated.

Example for one ecosystem service - tourism

- Input data
 - Overnight stays (NUTS 2) related to nature (Eurostat);
 - Recreation Opportunity Spectrum (ROS) map, based on CORINE (JRC model)
 - 5.5 mio. polygons with recreation potential value based on attractiveness and accessibility
 - Ecotourism from national NUTS 2 data based on surveys (DE, NL, UK, HR, HU, RO, FI, SE: Σ163 NUTS 2 areas);
- Calculate # of eco nights / km²


Results


NUTS2 region, for example:	Total tourism overnight stays (million)	Ecotourism overnight stays (million)	Average ecotourism overnight stays per km ²	Value added generated by ecotourism stays (euro/year)	Employment generated by ecotourism stays (number of FTE)
ITC1	12.8	2.6	101		
ITC2	29.8	0.6	183		
ITC3	13.3	2.7	491		

overnight stays / km2

INCA outlook

- Start building the EU data integration platform in 2017;
- Create first draft of ecosystem extent accounts and condition accounts in 2017 and 2018;
- Review of data and models for ecosystem services accounts in 2017,
- Ecosystem services accounts and monetary accounts will start in 2017;
- Implementation of operable system until 2020 (+ beyond..)

Summary

- The protection and enhancement of natural capital (ecosystems and their services) are a top environmental priority for the EU.
- The ecosystems perspective should become mainstream in all landrelated EU, national and regional policies (e.g. land planning, flood reduction, climate adaptation, agriculture, cohesion policy);
- Key challenge is the availability of sufficiently detailed data (resolution and classification).
- Alignment of EU and Member State into a common system will be essential for wide use and acceptance.

