

Building and maintaining a pointbased georeference framework for statistics -

preliminary conclusions from the GEOSTAT 2 project

Jerker Moström Statistics Sweden

This story is about need for:

- High resolution data
- Up-to-date information
- Data decoupled from administrative geographies
- Urgent response

Challenge for NSIs to:

- Increase ability to link data to accurate and high precision spatial location (point-based foundation)
- Step-up use of administrative data to increase ability to enhance temporal resolution
- Create flexible production settings to provide a rich variety of statistical outputs (spatially and thematically) at low costs and with short production time.

The GEOSTAT 2 project:

- Propose a model for a point-based geospatial reference framework based on address, buildings and dwelling registers
- A priority of the proposed setup has been the ESS vision of a fully geocoded population census 2021
- The model could be considered suitable for statistics in the widest possible sense

A point-based foundation?

Why?

- Increases spatial resolution output (100 x 100 m)
- Increases flexibility by effectively deliver aggregations at any spatial unit (user defined geographies)
- Overrides problems emerging from changing geographies (territorial or statistical units)
- Use of non-aggregated point data contributes to better and more accurate spatial analyses within NSIs (proximity, access etc)

Generic characteristics

- Use of high quality point-based location data with time stamps (address, building/dwelling or cadastral parcel)
- Geocoding of statistical information at unit record level
- Use of standardized identifiers/geocodes to connect statistical information with location data

Three main approaches

Provide recommendations on:

- Identifying users and their needs
- Recognising geospatial data sources
- Assessing geospatial data sources
- Assessing data processing capacity
- Building georeferenced survey frame
- Geospatial data maintenance
- Constrains on data dissemination
- Creation of geospatially referenced statistical products

GSBPM

- Goal to mainstream geospatial data management by means of the Generic Statistical Business Process Model (GSBPM)
- National excercises resulting in:
 - Proposed improvement of the GSBPM (UNECE)
 - Guidance as to how the GSBPM can be used to improve internal producton processes
- Rina Tammisto, Statistics Finland will talk more about this later!

What about the Global Statistical-Geospatial Framework?

Thank you!

On behalf of the GEOSTAT 2 project consortium:

- Marie Haldorson, Jerker Moström & Karin Hedeklint (Sweden)
- Erik Engelien/Ola Nordbeck (Norway)
- Rina Tammisto (Finland)
- Vincent Loonis (France)
- Ingrid Kaminger (Austria)
- Amelia Wardzińska-Sharif (Poland)
- Ana Santos (Portugal)

For more information and forthcoming results. Please visit:

www.efgs.info/geostat/geostat2/