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Non-profit foundation working with data providers and international/government agencies to
operationalize and scale applications in support of vulnerable populations and sustainable
development.
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Pioneered Anonymized Mobile Network Data for Infectious Disease:
(2008 Zanzibar, Kenya, 2012 Haiti, 2013- Namibia, Indonesia)
and Crisis Response (Haiti 2010 earthquake and cholera. Nepal 2015)

Average daily numbers of sims that moved out from the communal sections surrounding
Saint-Marc, Oct 15 to Oct 23, 9:00 am, 2010.
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Quantifying the Impact of Human Mobility on Malaria
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Population distributions

50 .

WorldPop Project: Improving the spatial demographic evidence
base for low and middle income countries

Population
characteristics

. We develop scalable methods and models for integrating ancillary Population dynamics

datasources to complement and fill data gaps in census

- We integrate new technologies, including high resolution satellite
imagery and cellphone data

« We run training for government agencies in these methods

« We publish fully documented, peer-reviewed methods and make

outputs open access
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All Methods are Open and Published in Peer Reviewed Journals for Validation
and Transparency
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Reduced Vaccination and The Risk of Measles and Other Childhood Infections
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SDG are about “proportions”, “rates” and

“prevalence”

Need sub-national estimates

Requires consistent, comparable and reqularly
updated data population numbers

DEVELOPMENT
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The SDG Challenge: Measuring the Denominator
B e

National census data will continue to be our
most important datasource

Provides denominators and some numerators
for the SDGs, and requisite subnational detail

But, the 2015-2030 SDG period typically
includes just one census datapoint

And in some settings the situation is more
challenging




What Do We Have to Help Us?

Cellphone
Satellite

Census Census Census




Geolocated Surveys
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Satellite and GIS data

Afgooye Corridor Figures for Afgooye were revised in January 2010,
from 524,000 to 366,000

Facuit‘ygriculmre Total: 366,000

-

-0
< B
doaig 10159800+
44,000

These figures are included in the Shabelle Hoose regional figure.

Sources: UNHCR, Global insight digital mappang - © 1998 Europa Technologies Lid.
Statistics providad by UNHCR EO Somalla and GOHA Somalla,



Cellphone Call Detail Records

Mobility: \

Changing densities, flows,

g
seasonal/permanent migration

X

[ | /A\

Cell Phone Ownership Surges = *°°

Adulfs whoown a cell phone Social networks:
Number of contacts, calling
patterns
Call routed .
through nea Consumption:

Credit purchase frequencies,
top-up amounts

15 |

Protecting confidentiality
-Aggregate summaries
-Reqgulator approval
User travels -Raw data never leaves

to Y and e == operator
makes a call - w

0 5 10 15 20
distance (km)

tower

2
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SUSTAINABLE
” DEVELOPMENT

GOOD HEALTH GENDER
AND WELL-BEING EDUCATION EQUALITY AND SANITATION
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How can we get there with census data plus these
newer datasets?
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More Mdfdtitation Than Just Bu

is a valuable initial VAT
step Pt

ildings

But, buildings do not
directly translate to
people

Multiple factors drive
differences in
distributions and
demographics

Importance of
integrating multiple data
sources

ﬁﬁnu scat




Census Data Disaggregation

Integration with satellite/GIS data
related to human population
distribution patterns to disaggregate
counts to reqgular grids

> 30 People Per Ha

. H > 30 People Per Pixel
Wwomen of cnilgobearing age per LxLKm I e
N .




Benefits of ‘Gridded’ Demographic Data

oy
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Grids: flexibility in
analysis and data
integration

Comprehensive Emergency Obstetric and
Neonatal Care (CEmONC) Facilities overlaid
on grid of women of childbearing age

Percentage of women of childbearing age per
woreda within 50km of a CEmONC




Census Data is not Always Trustworthy

Years
since
last

. census

*Every ten years

* Released with delay

* Sometimes much older
* Sometimes manipulated




Bottom-up Mapping: Micro-Censuses in Selected Locations

High resolution population
distribution

Settlement areas

National Laboratory

BILL&MELINDA

GATES fuun([zzrzun

Ref: Alegana et al. Royal. Soc. Interf. 2015
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Number of people
per grid square
(100m resolution) Peaple per Pixel

- High

- Low
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Pudukkudiyirippu [ District Boundaries
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L] Urban population centers
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Refs: See www.worldpop.org



Datasets, Methods in use Operationally

S Children under 5yrs

- M

Malawi

THE STATE OF THE

v 7 . v WORLD’S MIDWIFERY
< 2014

N A UNIVERSAL
EAST ASIA’S i Malawi live

CHANGING URBAN ® |
LANDSCAPE births

Measuring a Decade

 STATES REGIONAL OFFICE
2015
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Temporal Change: Looking Back

China Population, 2010

Number of people per pixel
- High : 20

-Low:O

&
*

asaulﬁ:} L

ot 1,000
2 OIsease cO“‘Q

Kilometers

Ref: Gaughan et al.
Nature Scientific Data.

2015



Temporal Change: Projecting Forward

2010

Population density
(people per km?)

A G <% 1000
7 e u 800

Ay % o P - 400
' o e N =200
-0

Ref: Lindard et al. Applied Geography. 2013



Populations Don’t Stay Put...
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Namibia Pop: 2.3
mill
MTC active
subscriptions: 2.1
mill

1 i SN FLOWMINDER.ORG



Measuring Targets: Population Characteristics and Coverages

SDG targets

1. 'N’g“.""j B ° 1.1. Eradicate extreme poverty for all people
el everywhere
* 2.2. End all forms of malnutrition, including the

internationally agreed targets on stunting and wasting in
children under 5 years of age

3 GOOD HEALTH

AND WELL-BEING

* 3.7. Ensure universal access to sexual and reproductive
health-care services

4 QUALITY

LB * 4.6. Ensure that all youth and a substantial proportion of
adults, both men and women, achieve literacy

T e 6.2. Achieve access to adequate and equitable sanitation

AND SANITATION

E and hygiene for all




Spatial Data Integration

* Population characteristics
measured Iin household surveys
can be strongly related to features
we can measure everywhere

* We can use these relationships to
predict characteristics into
unsampled locations using metrics
from census, satellite and
cellphone data to create maps of
SDG-relevant indicators

* Importance of validation and the
measurement and mapping of
uncertainty

[ Poverty
rate

-Increasing distance from major roads =
increasing poverty
-Increasing urbanicity = decreasing
poverty

-Wider social network = lower poverty

-Large, regular credit top up = lower
poverty




Dislance (o roads

- Farthest

Closest

Improving Mapping of
Socioeconomic Indicators
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~ Example Output:
v - Bangladesh wealth index

R2=0.77

" Observed

-1 -0,5 0 0,5 1 1,5 2 2,5

Predicted

—_—— - Cellphone and satellite data are collected
e ” 24/7 = Potential for ongoing monitoring

1.7

N




High-Resolution Poverty Maps
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Polio Vaccination in Nigeria: Where are the <5s?

1

Observed number of children under 5 years

&

Predicted mean percentage of
population less than 5 years of age

Difference between the upper
and lower credible interval

oy Hot
-

0 75150 300 450 Kilometers
e o S|
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0

20 40
Predicted number of children under 5 years
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Percentage of Population with Access to Sanitation

g Uganda: A
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Mapping Displacement and Movements due to Climate Change
and Disasters

GOOD HEALTH
AND WELL-BEING

13 onov




MNormalized Travel

Mapping Population Movements

High -

Low -

B Cen

Coast
) East

M Mairol
ME

Bl Myan;

Change of flow during Chinese
New Year

ERMEE

worlel

PO T;’ ‘:[};
FLOWMINDER.

I]RG




Measuring Migration
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Preparedness and Response to Disasters: Haiti Earthquake 2010

Post-earthquake distribution
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Hurricane Matthew:
Estimated population movement, 24
October 2016

The map shows the estimated distribution of people
for whom their home Section Communale in the
pre-hurricane period was in either Grande Anse,
Sud or Nippes départment, and as of 24 October
had moved to another Section Communale.

Estimates are based on movements of de-identified
SIM cards which made or received at least one call
pre-hurricane and on 24 October 2016.

The SIM card movements combined with available
population data derived from estimates for the year
201511,

The table lists the locations with the largest number
of arrivals

Digicel

Location Population Persons Ratio

pre-hurricane arrived (%)

Port-au-Prince 2870000 85700 3
(Metropolitan area)

Bourdet 71600 30100 42
(Les Cayes)

Fond Rouge Daiyer 27100 6950 26
(Jeremie)

Fond Rouge De 26800 6790 25

Torbec (Jeremie)

[1] https://data.humdata.org/dataset/estimated-population-of-haiti-2015

Contacts:
linus.bengtsson@flowminder.org
chris.brooks@flowminder.org

+41 78 964 88 28
+44 7815 944 012

smmnes Digicel

Estimated population away from their home Section Communalel?}:

HOME DEPARTMENT: GRANDE ANSE SuUD NIPPES
POPULATION AWAY FROM HOME: 77500 132000 51000
% AWAY FROM HOME: 18% 17% 15%

24 October 2016, location of people away from their home Section Communale
(out of those living pre-hurricane in Grande Anse, Sud and Nippes only)3l

Rort-De-Paix

nsufficient data
0-500

500 - 1500
1500 - 3000
W 3000 - 6000
W 6000 - 15000
M 15000 - 35000

[2] Of the people normally resident within the given Départment, we estimate the
total number away from their home Section Communale on the given day.
[3] Section Communales are left blank where insufficient data is available.

Flowminder.org is a non-profit organization registered in Stockholm, Sweden. Digicel is a mobile operator in Haiti 1
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Predictive Modeling
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First Project (MDEEP) on Mobile data and Climate Displacement:
2013 Bangladesh Cyclone Mahasen

ICCCAD

International Centre for
Climate Change and
Davelopmaent
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Indepandant University, Bangladesh
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Mahasen: 16 May
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Large Spending on Airtime Before Mahasen:
Ability to Communicate is Paramount in a Disaster

Day before Mahasen

Ref: Lu et al. Climatic Change. 2016; Global Environmental Change. 2016
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Call Frequencies Follow a Daily Rythm

Ref: Lu et al. Climatic Change. 2016; Global Environmental Change. 2016



Call Frequency Increased 1500% During Mahasen
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Increase in Calling Frequency Likely Indicate Impact

e

3.32 am on 16 May
Ref: Lu et al. Climatic Change. 2016; Global Environmental Change. 2016




Nepal Earthquake 2015: Setup & First Insights Within 14 Days

Nepal Population Estimates
as of May 1, 2015

2. Kathmandu Valley

Kathmandu Valley is here defined as the districts
Kathmandu, Bhaktapur and Lalitpur. Kathmandu
Valley is one of the most densely populated areas
in Nepal and home to ca 2.8 m people [1].

Key findings:

2>

An estimated 390,000 people more than
normal had left the Kathmandu valley -
comparing May 1 with the day before the
earthquake April 24 (ratio to the
population: 14%).

An estimated 247,000 persons less than
normal had come into the area during the
same period(ratio to the population: 8.8%)

People leaving Kathmandu Valley went to
a large number of areas, notably the
populous areas in the south and the
Central and West Development Regions.

2.8m +390,000 -247,000

(246,000~540,000) (- 155,000~ 339,000)

Above normal flows from Kathmandu Valley to other districts

. Negative . Positive

3,000
9,000

30,000

FLOWMINDER.ORG 7<) il i I

Ref: Bengtsson et al. Sci Rep. 2015; Wesolowski et al. PLoS Currents 2014, Wilson et al. PLoS Current 201



Global Mobile Industry Recognition (Feb 2016)

3c Mobile in Emergency or Humanitarian Situations -
Flowminder, Ncell and TeliaSonera for Aid the
displaced post Nepal earthquake

FI.DWMINI]EHUHG “3 Ncell@ TeliaSonera

“A brilliant example of how the application of big data analysis to mobile technologies can be used
to accelerate emergency aid, and provide intelligence to help prepare for future disasters.”






The Star Trek Fallacy

1. Data is part of the tool, not the solution
- Issue-driven vs. data-driven problem solving.

2. Remote sensing data and analytics can augment but not replace census
and surveys

3. Very few studies of bias in mobile operator data

4. Mobile network data does not have stable properties:
 Fundamental characteristics (subscribers) constantly changing.
* Mobile data is heterogenous - market/operators.
* Representativeness - what does a SIM card represent?
* Realtime mobile data without validation = realtime mistakes



Summary

* In producing estimates for different geographical scales and time
periods, the integration of multiple types of data to compliment
traditional sources is often required

* Novel datasets (e.g. phones, satellite) are prone to biases, but each
has advantages over census data in terms of the frequency of
measurement and coverage

* Methods to account for biases, reporting uncertainties and providing
clear metadata/documentation to inform users are all important

* Great potential in complimenting traditional sources to build strong
demographic databases for measuring progress towards the SDGs

worc B I M FLOWMINDER.ORG
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