

Using grid data to locate spesific cultural landscapes

Grete Stokstad Norwegian Forest and Landscape Institute

The European Forum for GeoStatistics 2009, 5.-7. October

Outline

- Background
- Study area
- The idea/model
- Data and quality
- Database
- An example
- The road ahead

Background

> Initiation of a local farm support system to promote/compensate for management activities that preserve the cultural landscape (RMP).

- > It is a payment that only qualifying famers will receive.
- > It is a regional subsidy, designed locally (county) to meet the local needs and to be able to maintain interesting cultural landscapes (- on a national scale as well as locally valuable landscapes).

- > TODAY: To some extent based on case handlers judgment.
- > Question: Can we distinguish valuable cultural landscapes with use of objective criteria?
- > The choice of criteria may never be objective. However, can we shift the discussion:
 - > FROM who is getting support
 - > TO a discussion of choice of criteria such as the size of fields in relation to edges, topography, or the number of archeologically interesting places.

The idea or tool!

Database

North	East	NUmber of old houses	Area with pasture
1	1	X _{1,hus}	X _{1,dabeite}
1	2	X _{2,hus}	X _{2,dabeite}
1	3	$X_{3,hus}$	X _{3,dabeite}
2	1	X _{4,hus}	X _{4,dabeite}

Calculated index for cell j: $y_j = f(x_{j, \text{ old house}} x_{j, \text{ area pasture}})$

North	East	Value		
1	1	y ₁		
1	2	y ₂		
1	3	y ₃		
2	1	y ₄		

Calculated value

Reference group

What is interesting to include in the database?

What should/could be used to rank areas?

Count the number of times the cell has a value within a given range (0/1)

Predict the probability that a cell belongs to a particular quality grouping.

This method requires that we have enough quality controlled cells to estimate a model.

Requirements to a tool

- > Pick out cells that meet some requirements, as for example the index calculation
- > Visualize the data in the database by using maps
- > Calculate the total amount of potential selected areas, number of buildings, animals etc. witch are within the selected areas.

Data in the database

and some examples

Database

Land capability classification-(1:5000) (MARKSLAG)

- Farm land, 3 types of surface:
 - Arable land
 - Area that may be harvested mechanically, but it is not arable land
 - Pasture, area not suitable for mechanical harvesting or ploughing
- Forested areas and other types of areas ...

Calculations based on land capability classification:

- Hix (identical neighbouring points)
- Shannon diversity index
- Length of edges between farm land and other surface types
- Farmed area with slope (topographical model and land cover)

Database - continued

- Farm buildings (GAB)
- Old farm buildings (SEFRAK)
- Application for farm subsidies (PT-2006)
 - Farm location
 - Number of animals per farm
 - Crop type with sum area per farm
- Archaeological registrations (Askeladden) several types
- Nature database (protected areas)
- Stone fences and solitaire trees
- Roads

Grid size

We have used 2 km * 2 km and 1 km * 1 km.

For data such farm density and number of animals, should we use larger areas, for example 3*3 km for each 1* 1 km cell.

Data quality – example stone fences

How is the quality?

An example

Selection: Valley and mountain districts

Share of cells that satisfy the criteria (%YES)

		Criteria	%YES
1	% pasture of famed land	20%-70%	26
2	Length of stone fences, m	150-1300	21
3	Number of old farm buildings	>0	56
4	Types of land cover (max 14 groups)	>2	100
5	% of famed land with slope > 20 %	> 20%	35
6	Water and famed land in the grid	Yes	92
7	Old farm building / all farm buildings	> 0,3	48

skog+ landskap

Morgedal

	Morgedal	Select 1	Select 2 15%-
% pasture of farmed land	18,6	15%-30%	100%
Area with pasture, m ²	64153		
% farmed land wit slope > 20 %	6,73	5-100%	5-100%
Length of edges of farm land, m	9612		
		1000-	
Length of stone fences, m	1200	1300	150 -1300
Old farm houses (SEFRAK)	21	>15	>15
# of land cover types (14 groups)	10	>=8	>=8
Old farm buildings/farm buildings	0,3	> 0,25	> 0,25
Both water and farmed land in the grid	1	1	1

Arendal

Norge i Bilder

Bredde: 1900 meter Høyde: 2523 meter

Åsgrend in Tokke

Åsgrend in Tokke (photo Oskar Puschmann)

Other locations

- We have also looked at some other areas:
 - A typical scenic landscapes along the coast
 - An valued area in the forest region
- Hix and diversity index are not easy to explain nor understand, however they tend to vary between the different location we have studied.

The road ahead

Lessons learned

- Visualisation of the data directly from the database was valuable for the reference group.
- One should look within (farming) regions (somewhat homogeneous areas).
- Multiple grid sizes and aggregated data must be available for a given cell.
- We can find similar cells we can pin point where to take a closer look.
 - We will probably be better at finding typical areas than special rare and interesting features.
- Data quality is an issue to look into

Implications for future work

- We need to know what we are looking for!
- We need a better theoretical foundation for what we are looking at.
- What we "value" and want to maintain needs to be defined.

Thus: How is the relationship between data we may measure and the quality of:

- Biodiversity
- Scenic beauty
- Accessibility
- Authentic cultural landscape

Morgedal (photo Oskar Puschmann)